Skip to main content

Getting Started — Quickstart Guide

Get started with ByteEngine in under 15 minutes — from account creation to running your first healthcare AI workflow.

Overview

ByteEngine is built to make healthcare AI orchestration and FHIR data automation easy — even if you've never worked with AI or healthcare standards before.

In this Quickstart, you'll learn how to:

  • Create a FHIR or DICOM data store
  • Add and view healthcare data
  • Deploy an AI Worker (agent)
  • Create an automated workflow
  • View AI results and logs

Goal: Build a workflow that summarizes new patient observations automatically using a healthcare AI agent.

Step 1: Sign Up & Log In

  1. Go to ByteEngine Console
  2. Click Sign Up
  3. Enter your email and password or sign in with Google

UI Placeholder: [Screenshot: ByteEngine Signup Page showing region selector and compliance info.]

Step 2: Create Your First FHIR Server

  1. Navigate to HealthDataStoreCreate New Server
  2. Select FHIR Server
  3. Enter:
    • Name: demo-fhir-server
    • Version: R4
    • Region: US
  4. Click Deploy

In a few seconds, your FHIR server is live!

UI Placeholder: [Screenshot: FHIR server dashboard with base URL and endpoint list.]

Example API Endpoint

Your server URL will look like this:

https://api.engine.boolbyte.com/api/fhirserver/{server_id}

Using JavaScript SDK

import { EngineClient } from '@boolbyte/engine';

const client = new EngineClient({ apiKey: 'YOUR_API_KEY' });

// Create a FHIR server
const fhirServer = await client.dataStore.createFhirStore({
name: 'demo-fhir-server',
region: 'global',
fhirVersion: 'R4',
type: 'serverless'
});

console.log('FHIR Server created:', fhirServer.data.endpoint);

Step 3: Add Sample FHIR Data

Now let's add a sample Patient and an Observation.

Example: Create a Patient

curl -X POST https://api.engine.boolbyte.com/api/fhirserver/{server_id}/Patient \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/fhir+json" \
-d '{
"resourceType": "Patient",
"name": [{ "given": ["John"], "family": "Doe" }],
"gender": "male",
"birthDate": "1980-03-10"
}'

Example: Create an Observation

curl -X POST https://api.engine.boolbyte.com/api/fhirserver/{server_id}/Observation \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/fhir+json" \
-d '{
"resourceType": "Observation",
"status": "final",
"code": { "text": "Oxygen Saturation" },
"subject": { "reference": "Patient/1" },
"valueQuantity": { "value": 95, "unit": "%" }
}'

UI Placeholder: [Screenshot: FHIR Explorer view showing Patient and Observation entries.]

Using JavaScript SDK

// Initialize FHIR client
await client.dataStore.initializeFhirStoreClient(fhirServer.data.id);
const fhirClient = client.dataStore.getFhirStoreClient();

// Create a patient
const patient = await fhirClient.create({
resource: {
resourceType: "Patient",
name: [{ given: ["John"], family: "Doe" }],
gender: "male",
birthDate: "1980-03-10"
}
});

// Create an observation
const observation = await fhirClient.create({
resource: {
resourceType: "Observation",
status: "final",
code: { text: "Oxygen Saturation" },
subject: { reference: `Patient/${patient.id}` },
valueQuantity: { value: 95, unit: "%" }
}
});

console.log('Patient created:', patient.id);
console.log('Observation created:', observation.id);

Step 4: Create an AI Worker

AI Workers are intelligent agents that reason, act, and interact with your FHIR data.

  1. Go to AI WorkersNew Worker
  2. Choose a Model:
    • medgemma-27b (healthcare-optimized)
    • gpt-oss-120b (general-purpose)
  3. Set Worker Name: VitalsSummarizer
  4. Add Instructions:
    Summarize all new Observation records for each Patient and highlight significant changes.
  5. Save and Deploy

UI Placeholder: [Screenshot: Worker creation form with instruction editor and model selection.]

Using JavaScript SDK

// Create an AI Worker
const worker = await client.worker.createWorker({
name: 'VitalsSummarizer',
description: 'AI agent that summarizes patient vital signs and observations',
defaultModelName: 'medgemma-27b',
instructions: 'Summarize all new Observation records for each Patient and highlight significant changes.',
toolConfigs: {
tools: [
{
toolName: 'fhir_access',
config: { serverId: fhirServer.data.id }
}
]
}
});

console.log('AI Worker created:', worker.data.id);

Step 5: Create a Workflow

Now, let's connect everything together.

  1. Go to WorkflowsNew Workflow
  2. Drag:
    • FHIR Server (your demo server)
    • AI Worker (VitalsSummarizer)
  3. Add a Trigger:
    • Event: on Observation.created
  4. Click Run Workflow

UI Placeholder: [Screenshot: Visual Workflow Builder showing connections between FHIR Server and AI Worker.]

YAML Configuration Example

workflow:
name: summarize-new-observations
trigger:
event: Observation.created
source: demo-fhir-server
steps:
- type: worker
name: summarize-vitals
worker: VitalsSummarizer

Using JavaScript SDK

// Create a workflow
const workflow = await client.workflow.createWorkflow({
name: 'summarize-new-observations',
trigger: {
type: 'fhir',
event: 'Observation.created',
source: fhirServer.data.id
},
steps: [
{
id: 'summarize-vitals',
type: 'worker',
worker: worker.data.id,
input: '{{trigger.resource}}'
}
]
});

console.log('Workflow created:', workflow.data.id);

Step 6: View AI Results

After your workflow runs, go to the Sessions tab. You'll see the Worker's reasoning and output:

{
"session_id": "abc123",
"worker": "VitalsSummarizer",
"response": "Patient John Doe shows stable oxygen levels at 95%. No concerning changes detected."
}

UI Placeholder: [Screenshot: Session log view with AI output and FHIR resource reference.]

Using JavaScript SDK

// Create a session and run a task
const session = await client.session.createSession({
workerId: worker.data.id,
metadata: { context: 'vital signs analysis' }
});

const task = await client.task.createTask(session.data.id, {
instructions: 'Analyze the latest observation for Patient John Doe and provide a summary',
model: 'medgemma-27b'
});

console.log('Task completed:', task.data);

Step 7: Explore More

Now that you've built your first AI workflow, explore what else ByteEngine can do:

FeatureDescriptionExample
PipelinesConnect legacy databases and map to FHIR using AIAuto-convert SQL schema to FHIR
SubscriptionsTrigger bots on new FHIR eventsNotify when new lab results are created
Knowledge BasesStore patient notes for RAG-powered chatbots"Show me all recent radiology notes"
File StorageStore DICOM or PDF files alongside FHIRUpload and link patient scans

Next Steps

Summary

StepActionOutcome
1Sign up and choose data residencyHIPAA/GDPR-compliant workspace
2Create FHIR serverLive FHIR API endpoint
3Add sample dataPatient and Observation records
4Create AI WorkerAutomated summarization model
5Create WorkflowConnect data and AI logic
6View ResultsAI-generated clinical insights

You just built a healthcare AI workflow!

ByteEngine automates healthcare data orchestration — so you can focus on innovation, not infrastructure.

Build Something Amazing

Ready to build your healthcare application? Here are some ideas:

  • Clinical Decision Support - AI Workers that analyze patient data and suggest treatments
  • Administrative Automation - Agents that handle scheduling, billing, and documentation
  • Research Analytics - Tools that extract insights from large FHIR datasets
  • Patient Engagement - SMART Apps that help patients manage their care

Join our community to connect with other healthcare innovators!